Study on Analytical Methods of Multiple Nitrosamines in Sartan Pharmaceuticals

Shu-Han Chang, Ching-Chia Chang, Hui-Yu He, Li-Jing Wang, Shu-Yu Fan, You-Yu Lee, Jian-Lin Wu, Ya-Hui Hsu, Mei-Chih Lin, Su-Hsiang Tseng, Der-Yuan Wang Division of Research and Analysis, Food and Drug Adminstration (TFDA) Ministry of Health and Welfare, ROC (Taiwan)

1. Introduction

In June 2018, TFDA received the alarm from abroad about the incident for the contamination of valsartan active pharmaceutical ingredients (APIs). It was proved that a probable human carcinogen N-Nitrosodimethylamine (NDMA) was detected in valsartan API produced by Zhejiang Huahai.

NDMA is a member of the class of *N*-nitrosamines, which is also classified in IARC Group 2A (The agent is probably carcinogenic to humans). Generally, nitrosamines are found in both natural conditions and in industrial manufacturing applications such as pesticides, rubbers, dyes, and pharmaceuticals. In industry, it is conjectured that they are formed as by-products in manufacturing processes using materials such as amines, nitrates, and nitrites under a range of pH conditions from different mechanisms, such as nitrosation by nitrite. A recent issue for unexpected detection of NDMA, NDEA and NMBA in sartan medicines has been reported, which a threat has raised for safety of mediation in many countries. To inspect the situation of contamination for sartan medicines in Taiwan, it is necessary to develop an analytical method in order to monitor the nitrosamine impurities. However, many studies have focused on the determination of nitrosamines in tobacco, food, water and cosmetics. Instead, an analytical method of nitrosamines detection in pharmaceuticals, such as sartans, still remains vacancy and is urgent to be developed. In this study, it was aimed to establish a feasible and sensitive LC-MS/MS and GC-MS/MS method for determination of 17 nitrosamines (Figure 1) in sartans.

No	Compound	M.W.	GC-M	S/MS	LC/MS-MS		
NO.	Compound		Quantifier	Qualifier	Quantifier	Qualifier	
1	NDMA	74	74>42	74>44	75>58	75>43	
2	NDEA	102	102>85	102>56	103>75	103>47	
3	NMBA	146	-	-	147>117	147>87	
4	NDiPA	130	130>88	116>44	131>89	131>43	
5	NEIPA	116	116>99	88>71	117>75	117>47	
6	NDELA	134	-	-	135>74	135>104	
7	NDiPLA	162	-	-	163>88	163>70	
8	NDPA	130	130>113	130>43	131>89	131>43	
9	NMEA	88	88>71	88>42	89>61	89>29	
10	NMOR	116	116>86	116>56	117>87	117>86	
11	NPIP	114	114>84	114>97	115>69	115>41	
12	NPYR	100	100>55	100>70	101>55	101>41	
13	NDBA	158	116>99	158>99	159>57	159>103	
14	NDiBA	158	115>84	103>57	159>57	159>103	
15	NDiNA	298	169>99	218>225	299>57	299>71	
16	NDCHA	210	210>128	210>111	211>129	211>83	
17	NDPhA	198	169>168	169>167	-	-	
18	NDMA-d ₆	80	80>46	-	81>46	-	
19	$NDEA-d_4$	106	106>88	-	107>77	-	
20	NMBA-d ₃	149		-	150>120	-	
21	NDPA-d ₁₄	144	110>78	-	145>50	-	
22	NDPhA-d ₁₀	208	179>177	-	-	-	
23	NDELA-d ₈	142	-	-	143 > 111	-	

Figure 2. The MRM chromatograms of 12 nitrosamines and 5 internal standards analyzed by LC/MS/MS. (The peak number corresponding to peak name is shown in Table 2)

Table 2. LC/MS/MS – Accuracy and precision expressed as the recovery (%) and relative standard deviation (RSD in %) of the mean of analysis performed on at least three different days.

	Compounds	D	Spiked	Intra	aday matrices)	Inte (n=9 5	rday
	compounds	N		(11=3, , 5)		(11=3, , 5	
			(ng/mL)	Accuracy	Precision	Accuracy	Precision
			2.5	101.6	6.4	101.5	7.7
	NDMA	0.9988	25	106.0	4.7	104.9	3.8
			50	102.6	3.1	103.3	4.2
			2.5	107.5	5.0	110.3	5.3
	NDEA	0.9994	25	106.6	4.5	106.3	5.0
			50	104.2	6.5	104.1	6.2
			2.5	107.9	6.2	108.1	6.0
	NMBA	0.9977	25	100.4	7.8	99.1	7.8
			50	99.5	7.7	98.3	6.5
			2.5	95.9	8.8	97.1	8.8
	NDiPA*	0.9994	25	104.3	5.9	106.3	7.0
			50	105.7	7.1	106.4	7.6
			2.5	98.7	8.5	100.2	10.1
	NEIPA*	0.9992	25	97.7	11.1	100.3	12.1
			50	96.1	7.0	97.0	7.7
			2.5	99.5	6.8	100.5	7.1
	NDELA	0.9989	25	105.4	3.8	106.1	4.0
			50	104.7	5.1	106.4	5.2
			2.5	106.1	2.9	108.4	5.7
	NDiPLA	0.9995	25	98.8	6.6	102.8	7.7
			50	100.7	5.0	100.9	6.6
			2.5	89.2	6.4	87.5	6.8
	NDPA*	0.9996	25	99.2	8.7	100.7	8.6
			50	100.9	5.0	100.8	7.1
			2.5	95.7	6.4	94.4	6.7
	NMEA	0.9994	25	96.1	3.8	93.5	5.4
			50	97.5	9.0	93.1	8.5
			2.5	107.9	5.9	110.1	6.0
	NMOR	0.9993	25	104.4	6.1	103.7	6.7
I			50	108.9	5.8	103.7	7.6
			2.5	111.0	5.8	113.9	4.5
I	NPIP	0.9983	25	102.0	8.0	104.2	9.4
			50	98.7	7.2	101.6	7.9
			2.5	95.6	5.1	92.1	6.5
	NPYR	0.9992	25	95.2	5.8	92.3	7.2
			50	96.7	4.9	91.9	6.4

2. Materials and Methods

2.1 Chemicals and reagents

N-Nitrosodibutylamine (NDBA), N-Nitrosodiethylamine (NDEA), N-Nitrosodimethylamine (NDMA), N-Nitrosodipropylamine (NDPA), N-Nitrosodimethylamine-d₆ (NDMA-d₆) and N-Nitrosodipropylamine-d₁₄ $(NDPA-d_{14})$ were purchased from AccuStandard (CT, USA). N-Nitrosoethylisopropylamine (NEIPA) was purchased from BOC Sciences (NY, USA). N-Nitrosodiisopropylamine (NDiPA) was purchased from Chem Service (PA, USA). N-Nitrosodiethanolamine (NDELA), N-Nitrosomorpholine (NMOR) and N-Nitrosopyrrolidine (NPYR) were purchased from Sigma-Aldrich (MO, USA). N-Nitrosodiphenylamine (NDPhA) and *N*-Nitrosopiperidine (NPIP) were purchased from Supelco USA). *N*-Nitrosodicyclohexylamine (NDCHA), (PA, N-Nitrosodiisobutylamine (NDiBA), N-Nitrosodiisononylamine (NDiNA), N-Nitrosodiisopropanolamine (NDiPLA), *N*-Nitrosomethylethylamine (NMEA), N-Nitroso-N-methyl-4-aminobutyric acid (NMBA), N-Nitrosodiethylamine-d₄ (NDEA-d₄), *N*-Nitrosodiphenylamine-d₁₀ (NDPhA d_{10}), *N*-Nitroso-*N*-methyl-4-aminobutyric acid- d_3 (NMBA- d_3) were purchased from TRC (ON, Canada).

Methanol and formic acid of LC-MS grade were purchased from Sigma-Aldrich (MO, USA). Acetonitrile of LC-MS grade was purchased from J.T Baker (NJ, USA). Water of LC-MS grade was purchased from Scharlau (Barcelona, Spain).

2.2 Equipment 2.2.1 LC-MS/MS

- Waters Acquity UPLC system
- AB SCIEX QTRAP 6500
- LC column
- Waters XSelect HSS T3 column $(15 \text{ cm} \times 3 \text{ mm i.d.}, 3.5 \mu \text{m})$
- LC-MS/MS conditions
- Sample injection: 10 µL
- Column temperature: 40°C

3. Results and Discussion

3.1 LC-MS/MS

For the LC-MS/MS system, 16 nitrosamines standard can be analysed excluding NDPhA, which is decomposes during ionization. However, 4 nitrosamines (NDBA, NDiBA, NDiNA, NDCHA) coelute with the sartan ingredient and their signals are suppressed. The remaining 12 nitrosamines could be detected simultaneously in spiked sartan samples (candesartan, irbesartan, losartan, olmesartan and valsartan). In this method, 12 nitrosamines and 5 internal standards elute within 8.5 minutes (Figure 2), and the total run time is 15 minutes to flush out the high concentration of sartan matrix. The linearity from 2.5 to 50 ng/mL (IS 20 ng/mL) was evaluated by the R value, and R was above 0.9977 for all compounds. The recovery of intraday and inter-day was 87.5-113.9 % for spiked samples in 5 different sartan APIs, while the range of precision was 2.9 - 12.1 % (Table 2). However, only the recovery of NDiPA, NDPA and NEIPA in irbesartan API was not within the range of 100.0 ± 20.0 %. The limit of quantitation (LOQ) for 12 nitrosamines were 0.05 µg/g.

* Only data from samples spiked into 4 different matrices are shown.

+EI MRM CID

- Flow rate: 0.6 mL/min
- Mobile phase: Gradient analysis
- A: 0.1% formic acid in water
- B: 0.1% formic acid in acetonitrile/methanol (2:8)
- Detection time: 0.0 8.5 min
- Ion source: APCI⁺
- Nebulizer current: 5 µA
- Curtain gas: 25 psi
- Ion source gas: 50 psi
- Temperature: 400°C
- Detection mode: sMRM (Table 1)

2.2.2 GC-MS/MS

- Agilent Technologies System (GC 7890B, MS 7000C Triple Quad)
- ➢ GC column
- Agilent DB-WAX Ultra Inert column $(30 \text{ m} \times 0.25 \text{ mm i.d.}, 0.25 \mu\text{m})$
- > GC-MS/MS conditions
- Sample injection: 2 µL
- Injection mode: pulsed splitless mode
- Injection temperature: 250°C
- Interface temperature: 250°C
- Carrier gas: He
- Flow rate: 1.0 mL/min
- Oven temperature: 80°C (3 min) →250°C at 20°C/min (3 min)
- Electronic impact (EI): 70 eV
- El source temperature: 230°C
- Q1 and Q2 temperature: 150°C
- Detection mode: MRM (Table 1)

2.3 Analytical procedure

2.3.1 Sample preparation 2.3.2 Sample preparation for LC-MS/MS analysis for GC-MS/MS analysis Sample 250 mg

Sample 100 mg \downarrow Add 500 µL of IS (20 ng/mL)

3.2 GC-MS/MS

For the GC-MS/MS system, 16 nitrosamines standard can be analysed excluding NMBA. However, NDELA and NDiPLA signals are too weak and unable to achieve good sensitivity, so only 14 nitrosamines are suitable for GC-MS/MS analysis. In this method, 14 nitrosamines and 4 internal standards could be detected simultaneously within 14.5 minutes (Figure 3). The linearity from 1 to 50 ng/mL (IS 20 ng/mL) was evaluated by the R value, and R was above 0.9995 for all compounds. The recovery of intra-day and inter-day was 97.0-104.8 % for spiked samples in 5 sartan APIs, while the range of precision was 0.5 - 12.2 % (Table 3). Only the recovery of NPYR in low concentration of olmesartan and valsartan API exceeds 120%. The limit of quantitation (LOQ) for 14 nitrosamines were 0.05 μ g/g.

The two methods complement each other and the compounds that have less acceptable recoveries in either method can be compensated and measured by the other methods.

3.3 Analysis of sartan samples

The methods are being applied to analyze 181 drug substances and 419 drug products, including valsartan, losartan, irbesartan, candesartan, olmesartan, telmisartan, azilsartan and pioglitazone pharmaceuticals (Figure 4). The test results showed that NDMA was detected in valsartan; NDEA was detected in irbesartan, losartan and valsartan. NMBA was detected in losartan and valsartan. NMOR, NPIP and NDPhA were also detected in valsartan. When these impurities were found in the APIs, the corresponding drug products were also found to contain these impurities.

4. Conclusions

Two fast and sensitive methods were developed using LC-MS/MS and GC-MS/MS techniques to detect 17 nitrosamines at low concentration in sartan

17—

Figure 3. The MRM chromatograms of 14 nitrosamines and 4 internal standards analyzed by GC/MS/MS. (The peak number corresponding) to peak name is shown in Table 2)

Table 3. GC/MS/MS – Accuracy and precision expressed as the recovery (%) and relative standard deviation (RSD in %) of the mean of analysis performed on at least three different days.

			Spiked	Intra	aday	Inte	rday
Compo	unds	R	concentration	(n=3, 5 r	natrices)	(n=9, 5	matrices)
			(ng/mL)	Accuracy	Precision	Accuracy	Precision
		0.9999	5	99.9	3.8	99.9	4.8
NDM	IA		10	101.7	7.2	101.6	4.9
			25	101.1	3.2	101.4	3.0
		0.9998	5	101.4	2.0	100.7	2.0
NDE	A		10	99.1	0.9	99.9	1.5
			25	100.0	2.5	100.3	2.0
			5	97.9	3.5	99.4	3.8
NDiF	PA	0.9999	10	97.9	3.7	98.2	4.7
			25	98.4	2.0	97.8	3.3
		0.9995	5	100.5	5.6	99.5	4.7
NEIF	PA		10	98.4	6.0	98.1	5.9
			25	98.9	5.7	98.6	5.8
			5	99.4	1.0	100.8	2.0
NDP	A	0.9997	10	100.3	0.8	101.5	1.9
			25	102.2	0.9	101.7	1.8
			5	103.3	2.2	102.0	2.3
NME	NMEA	0.9999	10	99.8	3.0	99.9	2.7
			25	100.5	2.7	101.2	3.0
			5	97.0	4.7	99.3	5.4
NMO	NMOR	0.9998	10	97.5	3.2	98.6	4.8
			25	98.2	3.9	99.0	4.6
			5	99.4	3.5	100.9	3.6
NPI	NPIP	0.9998	10	99.1	3.9	100.1	3.6
		25	100.5	3.2	100.6	2.9	

103.6

98.3

100.1

5

10

25

NPYR*

0.9998

3.0

3.9

5.4

102.1

99.2

99.7

3.7

3.8

4.3

↓Sonicate (30 min) ↓Filter (0.22 µm PVDF)

Nitrosodimethylami

(NDMA)

(NDELA)

Nitrosomorpholine

(NMOR)

(NDCHA)

↓Add 250 µL of IS (400 ng/mL) ↓Add methanol 250 µL ↓Add methanol to 5 mL ↓Votex and Sonicate (5 min) ↓Add water 4.5 mL ↓Votex and Sonicate (5 min) \downarrow Centrifuge 3000 × g (5 min) ↓Filter (0.22 µm PVDF) methyl-4-aminobutyric acid Nitrosoethylisopropylamine rosodiisopropylamine (NDEA) (NMBA) (NDiPA) (NEIPA) Nitrosodipropylamine (NMEA) (NDiPLA) (NDBA) (NDPA) Nitrosopyrrolidine Nitrosodiisobutylamine Nitrosopiperidine osodiphenylamine (NPYR) (NDiBA) (NDphA) (NPIP) D Nitrosodimethylamine-d6 Nitrosodiethylamine-d6 Nitrosodicvclohexvlamin litrosodiisononvlamin (NDMA-d6) (NDEA-d4) (NDiNA) Nitroso-*N*-methyl-4-aminobutyric acid-d3 Nitrosodipropylamine-d14 litrosodiethanolamine-da Nitrosodiphenvlamine-d1((NMBA-d3) (NDPA-d14) (NDELA-d8) (NDphA-d10)

Figure 1. Chemical structures of the 17 nitrosamines and 6 internal standards.

drugs. The optimized methods are completed within 15 minutes with good reproducibility and recovery. More work will be done to further improve the sensitivity and recovery of the two methods in the future.

								5	102.3	4.0	104.1	4.
	300					NDBA	0.9998	10	102.4	3.6	103.7	3.
	300		266					25	103.0	4.4	103.0	4.
			200					5	102.6	2.6	102.2	2.
	250					NDiBA	0.9999	10	101.7	3.4	102.4	3.
								25	102.6	2.5	102.4	2.
		100						5	100.6	6.6	101.1	10
	200	192				NDiNA	0.9998	10	98.9	7.3	99.1	11
								25	99.7	9.7	100.2	12
	150							5	99.9	6.0	100.5	7.
S	150					NDCHA	0.9998	10	98.5	4.1	98.8	6.
se								25	99.0	5.5	98.9	7.
Ga	100							5	103.5	5.6	104.8	5.
Ŭ	100			62		NDPhA	0.9998	10	101.2	3.3	102.2	3.
		56		63				25	100.8	0.5	101.8	2.
				-					0		•	
	50		36		26	* Only data f	rom sam	ples spiked int	o 3 differen	t matric	es are shown.	
	50		36 (=== ²⁶⁾		26	* Only data fi	rom sam 19	ples spiked int	o 3 differen 19	t matric	es are shown.	
	50	(28-526)	36 (*****)	5	26 0	* Only data fi	rom sam 19	ples spiked int) 0	o 3 differen 19 0	it matric	es are shown. 50	
	50 0	Valsartan	36 Losartan	5 Irbesartan	26 0 Olmesartan	* Only data fr	rom sam 19 tan To	ples spiked int) 0 elmisartan	o 3 differen 19 0 Azilsar	tan	es are shown. 5 ₀ Pioglitazon	е
Total case	50 0 es	Valsartan 192	36 Losartan 266	5 Irbesartan 63	26 0 Olmesartan 26	* Only data fr 10 0 Candesar 10	rom sam 19 tan To	ples spiked int) 0 elmisartan 19	o 3 differen 19 0 Azilsar 19	tan	es are shown. 5 ₀ Pioglitazon 5	е
 Total case Detected 	50 0 es	Valsartan 192 56	36 Losartan 266 36	5 Irbesartan 63 5	26 0 Olmesartan 26 0	* Only data fr 10 Candesar 10 0	rom sam 19 tan To	ples spiked int) 0 elmisartan 19 0	o 3 differen 19 0 Azilsar 19 0	tan	es are shown. 5 ₀ Pioglitazon 5 0	е
 Total case Detected NDMA de 	50 0 es etected	Valsartan 192 56 53	36 Losartan 266 36 0	5 Irbesartan 63 5 0	26 0 Olmesartan 26 0 0	* Only data fr 10 Candesar 10 0 0 0	rom sam 19 tan To	oples spiked int) 0 elmisartan 19 0 0	o 3 differen 19 0 Azilsar 19 0 0	tan	es are shown. 5 ₀ Pioglitazon 5 0 0	e
 Total case Detected NDMA detected NDEA detected 	50 0 es etected	Valsartan 192 56 53 11	36 Losartan 266 36 0 4	5 Irbesartan 63 5 0 5	26 0 Olmesartan 26 0 0 0	* Only data fr 100 Candesar 10 0 0 0 0	rom sam 19 tan To	oples spiked int) 0 elmisartan 19 0 0 0	o 3 differen 19 0 Azilsar 19 0 0	tan	es are shown. 5 Pioglitazon 5 0 0 0	e
 Total case Detected NDMA de NDEA def NMBA de 	50 0 es etected etected	Valsartan 192 56 53 11 1	36 Losartan 266 36 0 4 32	5 Irbesartan 63 5 0 5 0 5 0	26 0 Olmesartan 26 0 0 0 0 0	* Only data fr 100 Candesar 10 0 0 0 0 0 0	rom sam 19 tan To	oples spiked int) 0 elmisartan 19 0 0 0 0 0	o 3 differen 19 0 Azilsar 19 0 0 0	tan	es are shown. 5 0 Pioglitazon 5 0 0 0 0	e
 Total case Detected NDMA de NDEA def NMBA de NMBA de 	50 0 es etected etected etected	Valsartan 192 56 53 11 1 2	36 Losartan 266 36 0 4 32 0	5 Irbesartan 63 5 0 5 0 5 0 0	26 0 Olmesartan 26 0 0 0 0 0 0	* Only data fr 100 Candesar 10 0 0 0 0 0 0 0 0 0 0 0 0 0	rom sam 19 tan To	oples spiked int 0 elmisartan 19 0 0 0 0 0 0 0 0	o 3 differen 19 0 Azilsar 19 0 0 0 0	tan	es are shown. 5 Pioglitazon 5 0 0 0 0 0 0	e
 Total case Detected NDMA de NDEA def NMBA de NMOR de NPIP dete 	50 0 es etected etected etected etected etected	Valsartan 192 56 53 11 1 2 2 2	36 Losartan 266 36 0 4 32 0 0 0	5 Irbesartan 63 5 0 5 0 5 0 0 0	26 0 Olmesartan 26 0 0 0 0 0 0 0 0	* Only data fr 100 Candesar 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	rom sam 19 tan To	oples spiked int) 0 elmisartan 19 0 0 0 0 0 0 0 0 0	o 3 differen 19 0 Azilsar 19 0 0 0 0 0 0	tan	es are shown. 5 Pioglitazon 5 0 0 0 0 0 0 0 0 0 0 0 0 0	e

Figure 4. The testing results of *N*-nitrosamines determination in sartan active pharmaceutical ingredient and finished drug products in Taiwan. *To be determined.